Asie Juin 2014

Partie A

- Le but de cette partie est de démontrer que l'ensemble des nombres premiers est infini, en raisonnant par l'absurde.
- 1. On suppose qu'il existe un nombre fini n de nombres premiers, notés p_1, p_2, \ldots, p_n . On considère le nombre E produit de tous les nombres premiers augmenté de 1 :

$$E = p_1 \times p_2 \times ... \times p_n + 1$$

Démontrer que E est un entier supérieur ou égal à 2, et que E est premier avec chacun des nombres p_1, p_2, \dots, p_n

En utilisant le fait que E admet un diviseur premier, conclure. 2.

Partie B

Pour tout entier naturel $k \ge 2$, on pose $M_k = 2^k - 1$. On dit que M_k est le k-iéme nombre de Mersenne.

Reproduire et compléter le tableau suivant, qui donne quelques valeurs de M_k . 1. a.

_	- 10 tuo	1000		1	no que	9000				
	k	2	3	4	5	6	7	8	9	10
	M_k	3								

- D'après k tableau précédent, si k est un nombre premier, peut-on conjecturer que le nombre M_k est premier? b.
- 2. Soient p et q deux entiers naturels non nuls.

a. Justifier l'égalité :
$$1 + 2^p + (2^p)^2 + ... + (2^p)^{q-1} = \frac{2^{pq} - 1}{2^p - 1}$$

- En déduire que $2^{pq} 1$ est divisible par $2^p 1$. b.
- En déduire que, si un entier k supérieur ou égal à 2 n'est pas premier, alors M_k ne l'est pas non plus. c.
- 3. a. Prouver que le nombre de Mersenne M_{11} n'est pas premier.
- b. Que peut-on en déduire concernant la conjecture de la question 1. b. ?

Le test de Lucas-Lehmer permet de déterminer si un nombre de Mersenne donné est premier. Ce test utilise la suite numérique (u_n) définie par $u_0 = 4$ et, pour tout entier naturel n:

$$u_{n+1} = u_n^2 - 2$$

 $u_{n+1} = u_n^2 - 2$ Si *n* est un entier naturel supérieur ou égal à 2, le test permet d'affirmer que le nombre M_n est premier si et seulement si $u_{n-2} \equiv 0$ modulo M_n . Cette propriété est admise dans la suite.

Utiliser le test de Lucas-Lehmer pour vérifier que le nombre de Mersenne M_5 est premier.

Soit *n* un entier naturel supérieur ou égal à 3.

L'algorithme suivant, qui est incomplet, doit permettre de vérifier si le nombre de Mersenne M_n est premier, en utilisant le test de Lucas-Lehmer.

Variables:	u, M, n et i sont des entiers naturels.			
Initialisation:	u prend la valeur 4			
Traitement:	Demander un entier $n \ge 3$			
	M prend la valeur			
	Pour <i>i</i> allant de 1 àfaire			
	u prend la valeur			
	Fin Pour			
	Si <i>M</i> divise <i>u</i> alors afficher « <i>M</i> »			
	sinon afficher « M»			
	FinSi			

Recopier et compléter cet algorithme de façon à ce qu'il remplisse la condition voulue.

CORRECTION

Partie A

Le plus petit nombre premier est 2 donc $E \ge 2 + 1 \ge 2$ 1.

D'après le théorème de Bézout, E est premier avec p_i pour $1 \le i \le n$

E est donc premier avec chacun des nombres p_1, p_2, \ldots, p_n .

E n'est divisible par aucun nombre premier donc E est un nombre premier différent de tous les p_i, ce qui est contraire à 2. l'hypothèse faite.

L'ensemble des nombres premiers est donc infini.

Partie B

1. a.

k	2	3	4	5	6	7	8	9	10
M_k	3	7	15	31	63	127	255	511	1023

- D'après le tableau, si k est premier (2, 3, 5 et 7), M_k l'est aussi. Si k est composé (non premier) M_k est composé. La conjecture est donc qu'il y a une équivalence entre k est premier et M_k premier.
- La somme $1 + 2^p + (2^p)^2 + ... + (2^p)^{q-1}$ à la somme des termes d'une suite géométrique de premier terme égal à 1 et de raison $b = 2^p$.

si
$$b \neq 1$$
 alors $1 + b + b^2 + ... + b^{q-1} = \frac{b^q - 1}{b - 1}$. On a donc : $1 + 2^p + (2^p)^2 + ... + (2^p)^{q-1} = \frac{(2^p)^q - 1}{2^p - 1}$

b.
$$1 + 2^p + (2^p)^2 + \dots + (2^p)^{q-1} = \frac{(2^p)^q - 1}{2^p - 1}$$
 donc $1 + 2^p + (2^p)^2 + \dots + (2^p)^{q-1} = \frac{2^{pq} - 1}{2^p - 1}$

 $2^{pq} - 1 = [1 + 2^p + (2^p)^2 + ... + (2^p)^{q-1}] \times [2^p - 1]$

 $2^{pq} - 1$ est le produit de deux termes dont l'un est $2^p - 1$, il est donc divisible par ce nombre.

- c. Si k est un entier supérieur ou égal à 2 non premier alors il existe 2 entiers p et q différents de 1 tels que k=p q. Par conséquent $M_k=2^k-1=2^{pq}-1$ donc M_k est divisible par 2^p-1 d'après la question précédente. Pour montrer que M_k est premier, il faut de plus vérifier que $2^p-1\neq 1$ et $2^p-1\neq M_k$ $p\geq 2$ donc $2^p-1\geq 2^2-1$ donc $2^p-1\neq 1$ $2^p-1\neq M_k\Leftrightarrow 2^{pq}-1=2^p-1\Leftrightarrow p=p$ $q\Leftrightarrow p=0$ ou q=1 ce qui est exclu donc M_k admet un diviseur autre que 1 et lui-même
- $2^p 1 \neq M_k \Leftrightarrow 2^{pq} 1 = 2^p 1 \Leftrightarrow p = p \ q \Leftrightarrow p = 0$ ou q = 1 ce qui est exclu donc M_k admet un diviseur autre que 1 et lui-même donc M_k n'est pas premier.
- **a.** $M_{11} = 2^{11} 1 = 2047 = 23 \times 89$ donc M_{11} n'est donc pas premier.
- **b.** On a trouvé un nombre premier k pour lequel M_k n'est pas premier. La conjecture est donc fausse.

Partie C

 $M_5 = 31$, n = 5 donc n - 2 = 3

n	0	1	2	3
u_n	4	14	194	37 634

 $u_3 = 37634$ donc $u_3 = 31 \times 1214$ donc $u_3 \equiv 0$ modulo M_5 . Le test de Lucas-Lehmer fonctionne pour M_5 .

Variables:	u, M, n et i sont des entiers naturels.				
Initialisation:	u prend la valeur 4				
Traitement:	Demander un entier $n \ge 3$				
	M prend la valeur $2^n - 1$				
	Pour i allant de 1 à $n-2$ faire				
	u prend la valeur $u^2 - 2$				
	Fin Pour				
	Si <i>M</i> divise <i>u</i> alors afficher « <i>M</i> est un nombre premier »				
	sinon afficher « M n'est pas un nombre premier »				
	FinSi				