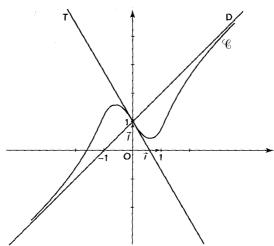
Sur la figure ci-dessous, sont représentées la courbe représentative C dans le repère orthonormal (0; /, /) d'une fonction f définie et dérivable sur E ainsi que son asymptote D et sa tangente C, au point d'abscisse 0.



On sait que le point J(0; 1) est centre de symétrie de la courbe C, que l'asymptote D passe par les points K(-1; 0) et J que la tangente C, a pour équation y=(1-e)x+1.

Partie A - Expression de f

- 1. Déterminer une équation de D.
- 2. On suppose qu'il existe deux réels m et p et une fonction cp définie sur R telle que, pour tout réel x, $f(x) = m x + p + \varphi(x)$ avec $\lim \varphi(x) = 0$.
- a. Déterminer m et p.
- b. Démontrer que, pour tout réel x, f(x) + f(-x) = 2.
- c. En déduire que la fonction φ est impaire puis que la fonction f', dérivée de f, est paire.
- 3. On suppose maintenant que, pour tout réel $x : \varphi(x) = (a x + b) e^{-x^2}$ où a et b sont des réels. Démontrer, en utilisant les données et les résultats précédents, que a = -e et b = 0.

Partie B

On considère la fonction f définie sur R par f(x) = 1 + x - x e^{-x²} et on suppose que la courbe C représente la fonction f dans le repère $(O; \vec{i}, \vec{j})$.

- 1. *a*. Vérifier que, pour tout réel *x* : $f'(x) = 1 + (2x^2 1) e^{-x^2 + 1}$. Calculer f'(0).
- b. Vérifier que C, est bien la tangente â la courbe C au point d'abscisse 0.

Étudier la position relative de la courbe C et de sa tangente C,

- 2. Le graphique suggère l'existence d'un minimum relatif de f sur [0; 1].
- a. Démontrer que f''(x) est du signe de $6x 4x^3$
- b. Démontrer que l'équation f'(x) = 0 admet une solution unique α sur] 0 ; 1].
- c. Démontrer que $0.51 < \alpha < 0.52$.
- d. Exprimer f(a) sous la forme d'un quotient de deux polynômes en α .

CORRECTION

PARTIE A

1. (JK) est une droite qui n'est pas parallèle à l'axe des ordonnées donc a une équation de la forme y = ax + b

Cette droite passe par les points J et K de coordonnées (0 ; 1) et (-1 ; 0) donc $\begin{cases} 1 = a \times 0 + b \\ 0 = a \times (-1) + b \end{cases}$ donc a = b = 1

(JK) a pour équation y = x + 1.

2. a.
$$f(x) - (mx + p) = \varphi(x)$$
 or $\lim_{x \to +\infty} \varphi(x) = 0$ donc $\lim_{x \to +\infty} f(x) - (mx + p) = 0$

donc la droite d'équation y = m x + p est asymptote à la courbe de f en $+ \infty$, or la droite (JK) est asymptote à C en $+ \infty$. donc m = 1 et p = 1 donc $f(x) = x + 1 + \varphi(x)$

2. b. J(a; b) est centre de symétrie de C donc pour tout x réel : f(2a - x) + f(x) = 2b Ici a = 0 et b = 1 donc f(x) + f(-x) = 2

2. *c*.
$$f(x) = x + 1 + \varphi(x) \operatorname{donc} f(-x) = -x + 1 + \varphi(-x)$$
 en remplaçant dans $f(x) + f(-x) = 2$: $x + 1 + \varphi(x) - x + 1 + \varphi(-x) = 2$ soit $\varphi(x) + \varphi(-x) = 0$ donc pour tout x réel : $\varphi(-x) = -\varphi(x)$ donc φ est impaire

f est définie dérivable sur ${\rm I\!R}$

f(x) + f(-x) = 2 donc en dérivant : pour tout x réel : f'(x) + [-f'(-x)] = 0 soit f'(-x) = f'(x) donc f' est paire

3. φ est impaire donc $\varphi(-x) = \varphi(x)$ donc pour tout x réel : $(-ax + b) e^{-x^2} = -(ax + b) e^{-x^2}$

pour tout x réel $e^{-x^2} \neq 0$, donc pour tout x réel : -a x + b = -a x - b soit pour tout x réel : 2b = 0 donc b = 0

$$f(x) = x + 1 + a x e^{-x^2}$$

Soit
$$u(x) = e^{-x^2}$$
 donc $u'(x) = -2 x e^{-x^2}$

donc
$$f'(x) = 1 + a e^{-x^2} - 2 a x^2 e^{-x^2}$$

La tangente en J a pour coefficient directeur 1 - e donc f'(0) = 1 - e donc 1 + a = 1 - e donc a = -e f(x) = x + 1 - e $x = e^{-x^2}$ soit f(x) = x + 1 - x $x = e^{-x^2 + 1}$

PARTIE B

1. a. D'après la première partie :
$$f'(x) = 1 - a e^{-x^2} + 2 a x^2 e^{-x^2}$$
 avec $a = -e$ soit $f'(x) = 1 - e^{-x^2+1} + 2 x^2 e^{-x^2+1}$ donc $f'(x) = 1 + (2 x^2 - 1) e^{-x^2+1}$ $f'(0) = 1 - e$

1. b. La tangente T au point de la courbe d'abscisse 0 a pour équation y = f'(0) x + f(0)f(0) = 1 et f'(0) = 1 - e donc T a pour équation y = (1 - e) x + 1

$$f(x) - [(1 - e)x + 1] = x + 1 - xe^{-x^2 + 1} - (1 - e)x - 1$$

$$f(x) - [(1 - e) x + 1] = (e - e^{-x^2 + 1}) x$$

$$f(x) - [(1 - e)x + 1] = e(1 - e^{-x^2})x$$

Pour tout x réel, $-x^2 \le 0$ donc $e^{-x^2} \le 1$ donc si $1 - e^{-x^2} \ge 0$

f(x) - [(1 - e)x + 1] a le même signe que x donc si x < 0, la courbe est en dessous de la tangente si x = 0, point de contact de la courbe et de la tangente si x > 0, la courbe est au dessus de la tangente

2. a.
$$f'(x) = 1 + (2x^2 - 1) e^{-x^2 + 1}$$

$$f''(x) = 4 x e^{-x^2+1} + (2x^2-1)(-2xe^{-x^2+1})$$

$$f''(x) = 2 x e^{-x^2+1} [2 - (2 x^2 - 1)]$$

$$f''(x) = 2 x e^{-x^2+1} (3-2 x^2)$$

Pour tout x réel, $e^{-x^2} > 0$

donc f "(x) a le même signe que $2 x (3 - 2 x^2)$ soit f "(x) a le même signe que $6 x - 4 x^3$

2. b. $3-2x^2=0 \Leftrightarrow x=\sqrt{\frac{3}{2}}$ ou $x=-\sqrt{\frac{3}{2}}$ donc $3-2x^2$ est positif entre les racines donc sur [0; 1]

donc sur] 0; 1], $2x(3-2x^2) > 0$ d'où le tableau de variation de f':

x	0		1
f "(x)	0	+	
f'	1 – e		2

La fonction f' est définie continue strictement croissante sur [0; 1], f'([0; 1]) = [1 - e; 2] $0 \in [1 - e; 2]$ donc l'équation f'(x) = 0 admet une seule solution α sur [0; 1].

2. c. f'(0.51) < 0 et f'(0.52) > 0 et f' est strictement croissante sur [0; 1], donc $0.51 < \alpha < 0.52$.

2.
$$d$$
. $f'(\alpha) = 0 \Leftrightarrow 1 + (2\alpha^2 - 1) e^{-\alpha^2 + 1}$

donc
$$e^{-\alpha^2+1} = \frac{-1}{2\alpha^2-1}$$

$$f(\alpha) = 1 + \alpha - \alpha e^{-\alpha^2 + 1} \operatorname{donc} f(\alpha) = 1 + \alpha + \frac{\alpha}{2\alpha^2 - 1}$$

$$f(\alpha) = \frac{2\alpha^3 + 2\alpha^2 - 1}{2\alpha^2 - 1}$$