Polynésie juin 2009

Exercice 1 4 points Commun à tous les candidats.

Une entreprise fabrique des lecteurs MP3, dont 6 % sont défectueux.

Chaque lecteur MP3 est soumis à une unité de contrôle dont la fiabilité n'est pas parfaite.

Cette unité de contrôle rejette 98 % des lecteurs MP3 défectueux et 5 % des lecteurs MP3 fonctionnant correctement.

On note:

- D l'évènement : « le lecteur MP3 est défectueux » ;
- R l'évènement : « l'unité de contrôle rejette le lecteur MP3 ».
- 1. Faire un arbre pondéré sur lequel on indiquera les données qui précèdent.
- 2. a. Calculer la probabilité que le lecteur soit défectueux et ne soit pas rejeté.
- **b.** On dit qu'il y a une erreur de contrôle lorsque le lecteur MP3 est rejeté alors qu'il n'est pas défectueux, ou qu'il n'est pas rejeté alors qu'il est défectueux.

Calculer la probabilité qu'il y ait une erreur de contrôle.

- 3. Montrer que la probabilité qu'un lecteur MP3 ne soit pas rejeté est égale à 0,894 2.
- 4. Quatre contrôles successifs indépendants sont maintenant réalisés pour savoir si un lecteur MP3 peut être commercialisé.

Un lecteur MP3 est:

- commercialisé avec le logo de l'entreprise s'il subit avec succès les quatre contrôles successifs,
- détruit s'il est rejeté au moins deux fois,
- commercialisé sans le logo sinon.

Le coût de fabrication d'un lecteur MP3 s'élève à 50 €.

Son prix de vente est de 120 € pour un lecteur aveclogo et 60 € pour un lecteur sans logo.

On désigne par G la variable aléatoire qui, à chaque lecteur MP3 fabriqué, associe le gain algébrique en euros (éventuellement négatif) réalisé par l'entreprise.

- a. Déterminer la loi de probabilité de la variable aléatoire G.
- **b.** Calculer à 10⁻² près l'espérance mathématique de G. Donner une interprétation de ce résultat.

Exercice 2 5 points Candidats n'ayant pas suivi l'enseignement de spécialité

Partie A : Restitution organisée de connaissances

Le plan complexe est muni d'un repère orthonormal direct.

On supposera connus les résultats suivants :

• Pour tous points A, B et C du plan d'affixes respectives a, b et c, avec A \neq C et A \neq B:

$$\left| \frac{b-a}{c-a} \right| = \frac{AB}{AC} \text{ et arg } \left(\frac{b-a}{c-a} \right) = (\overrightarrow{AC}, \overrightarrow{AB}) + k \times 2 \pi \text{ où } k \text{ est un entier relatif };$$

• Soit z un nombre complexe et soit θ un nombre réel : $z = e^{i\theta}$ si et seulement si |z| = 1 et $arg(z) = \theta + k \times 2\pi$ où k est un entier relatif. Démontrer que la rotation r d'angle α et de centre Ω d'affixe ω est la transformation du plan qui à tout point M d'affixe z associe le point M' d'affixe z' telle que : $z' - \omega = e^{i\alpha}(z - \omega)$.

Partie B

Le plan complexe est rapporté à un repère orthonormal direct (O, \vec{u}, \vec{v}) , unité graphique 1 cm.

Soit f l'application qui, à tout point M d'affixe z associe le point M' d'affixe z' telle que : z' = i z + 4 + 4 i.

- **1.** a. Déterminer l'affixe ω du point Ω tel que $f(\Omega) = \Omega$.
- **b.** Montrer que, pour tout nombre complexe z on a : z' 4 i = i (z 4 i).
- c. En déduire la nature et les éléments caractéristiques de f.
- 2. On note A et B les points d'affixes respectives a = 4 2 i et b = -4 + 6 i.
- a. Placer les points A, B et Ω sur une figure que l'on complétera au fur et à mesure des questions.
- **b.** Déterminer les affixes des points A' et B' images respectives des points A et B par f.
- 3. On appelle m, n, p et q les affixes des points M N, P et Q, milieux respectifs des segments [AA'], [A'B], [BB'] et [B'A].
- **a.** Déterminer m. On admettra que n = 1 + 7 i, p = -3 + 3 i et q = 1 i.
- **b.** Démontrer que MNPQ est un parallélogramme.
- c. Déterminer la forme algébrique du nombre complexe $\frac{q-m}{n-m}$. En déduire la nature du quadrilatère MNPQ.
- **4.** Démontrer que les droites (B'A) et (ΩN) sont perpendiculaires.

Exercice 2 5 points Candidats ayant suivi l'enseignement de spécialité

Partie A : Restitution organisée de connaissances

Le plan complexe est muni d'un repère orthonormal direct.

On supposera connu le résultat suivant :

Une application f du plan dans lui-même est une similitude directe si et seulement si f admet une écriture complexe de la forme

$$z' = a z + b$$
 où $a \in \mathbb{C} - \{0\}$ et $b \in \mathbb{C}$.

Démontrer que si A, B, A' et B' sont quatre points tels que A est distinct de B et A' est distinct de B', alors il existe une unique similitude directe transformant A en A' et B en B'.

Partie B

Le plan complexe est muni d'un repère orthonormal direct (O, \vec{u}, \vec{v}) , unité graphique 2 cm.

On note A, B, C, D et E les points d'affixes respectives $z_A = 2i$, $z_B = 2$, $z_C = 4 + 6i$, $z_D = -1 + i$ et $z_E = -3 + 3i$.

1. Placer les points sur une figure qui sera complétée au fur et à mesure des questions.

- 2. Déterminer la nature du triangle ABC.
- 3. Soit f la similitude plane directe telle que f(A) = D et f(B) = A.
- a. Donner l'écriture complexe de f.
- **b.** Déterminer l'angle, le rapport et le centre Ω de cette similitude.
- **c.** Montrer que le triangle DAE est l'image du triangle ABC par la similitude f.
- **d.** En déduire la nature du triangle DAE.
- **4.** On désigne par (Γ_1) le cercle de diamètre [AB] et par (Γ_2) le cercle de diamètre [AD].

On note M le second point d'intersection du cercle (Γ_1) et de la droite (BC), et N le second point d'intersection du cercle (Γ_2) et de la droite (AE).

- a. Déterminer l'image de M par la similitude f.
- **b.** En déduire la nature du triangle Ω MN.
- *c*. Montrer que MB \times NE = MC \times NA.

Exercice 3 5 points Commun à tous les candidats.

L'espace est muni d'un repère orthonormal $(O, \vec{i}, \vec{j}, \vec{k})$.

On considère les points : A(1; -1; 3), B(0; 3; 1), C(6; -7; -1), D(2; 1; 3) et E(4; -6; 2).

- **1.** a. Montrer que le barycentre du système $\{(A, 2), (B, -1), (C, 1)\}$ est le point E.
- **b.** En déduire l'ensemble Γ des points M de l'espace tels que $\|2\overrightarrow{MA} \overrightarrow{MB} + \overrightarrow{MC}\| = 2\sqrt{21}$.
- **2.** *a.* Montrer que les points A, B et D définissent un plan.
- **b.** Montrer que la droite (EC) est orthogonale au plan (ABD).
- c. Déterminer une équation cartésienne du plan (ABD).
- 3. a. Déterminer une représentation paramétrique de la droite (EC).
- **b.** Déterminer les coordonnées du point F intersection de la droite (EC) et du plan (ABD).
- **4.** Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation

Montrer que le plan (ABD) et l'ensemble Γ , déterminé à la question 1., sont sécants. Préciser les éléments caractéristiques de cette intersection.

Exercice 4 6 points Commun à tous les candidats.

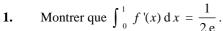
Le plan est muni d'un repère orthogonal ($0,\vec{i},\vec{j}$).

Partie A

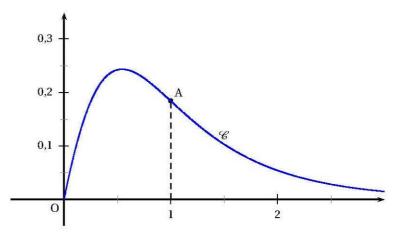
La courbe (C), donnée en annexe, est la courbe représentative d'une fonction f dérivable sur $[0; +\infty[$, de fonction dérivée f' continue sur $[0; +\infty[$.

La courbe (C) passe par les points O et $A\left(1,\frac{1}{e}\right)$; et, sur

[0; 1], elle est au dessus du segment [OA].



2. Montrer que
$$\int_{0}^{1} f(x) dx > \frac{1}{4e}$$



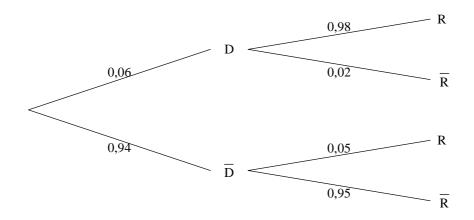
Partie B

On sait désormais que la fonction f considérée dans la partie A est définie sur $[0; +\infty[$ par $: f(x) = \frac{x e^{-x}}{x^2 + 1}$.

- 1. Déterminer la limite de f en $+\infty$. Interpréter graphiquement le résultat obtenu.
- 2. On considère la fonction g définie sur $[0; +\infty[$ par : $g(x) = x^3 + x^2 + x 1$. Établir que l'équation g(x) = 0 admet une solution unique α dans l'intervalle $[0; +\infty[$.
- **3.** a. Montrer que pour tout x de $[0; +\infty[, f'(x)]]$ et g(x) sont de signes contraires.
- **b.** En déduire les variations de f sur $[0; +\infty[$.
- **4.** On considère la suite (u_n) définie pour tout entier naturel n par : $u_n = \int_{-n}^{2n} f(x) dx$.
- a. Montrer que pour tout x de $[0; +\infty[$, $0 \le \frac{x}{x^2+1} \le \frac{1}{2}$.
- **b.** Montrer que pour tout entier naturel n, $0 \le u_n \le \frac{1}{2} (e^{-n} e^{-2n})$.
- c. En déduire la limite de u_n quand n tend vers $+\infty$.

Exercice 1 4 points 1.

Commun à tous les candidats.



- **2.** a. Les événements D et R sont indépendants donc D et \overline{R} aussi donc $p(D \cap \overline{R}) = p(D) \times p(\overline{R}) = 0.06 \times 0.02 = 0.0012$
- **b.** $p = p(\overline{D} \cap R) + p(D \cap \overline{R}) = 0.94 \times 0.05 + 0.0012 = 0.0482$
- 3. $p(\overline{R}) = p(\overline{D} \cap \overline{R}) + p(D \cap \overline{R}) = 0.94 \times 0.95 + 0.0012 = 0.8942.$
- 4. On a une succession de 4 expériences aléatoires identiques et indépendantes, chacune d'elle a deux issues :

succès : le lecteur est accepté par le contrôle (p = 0.8942)

échec : le lecteur est rejeté par le contrôle (q = 1 - p = 0.1058)

Soit X la variable aléatoire mesurant le nombre de contrôles positifs, X suit une loi binomiale de paramètres (4 ; 0,8942).

$$a.$$
 $p(X = 4) = 0.6393$

Le gain est alors égal à 120 - 50 = 70 € doncp(G = 70) = 0,6393

Le lecteur est détruit s'il est rejeté au moins 2 fois donc s'il est rejeté 2 ; 3 ou 4 fois donc s'il subit avec le test 2 ; 1 ou 0 fois La probabilité que le lecteur soit détruit est $p = p(X \le 2) = p(X = 0) + p(X = 1) + p(X = 2) = 0,0581$ Le gain est alors égal à $-50 \notin \text{donc} p(G = -50) = 0,0581$

Le lecteur est commercialisé sans le logo s'il est rejeté une seule fois donc accepté 3 fois La probabilité que le lecteur soit commercialisé sans le logo est p(X = 3) = 0.3026

Le gain est alors égal à $60 - 50 = 10 \in \text{donc} p(G = 10) = 0.3026$

La loi de probabilité de la variable aléatoire G est résumée dans le tableau :

х	- 50	10	70	Total
p(G = x)	0,0581	0,3026	0,6393	1
x p(G = x)	- 2,905	3,026	44,751	44,872

b. A 10⁻² près, l'espérance mathématique de G est 44,87.

Sur un grand nombre de lecteurs vendus, le gain moyen sera de 44,87 €.

Exercice 2 5 points Candidats n'ayant pas suivi l'enseignement de spécialité Partie A : Restitution organisée de connaissances

Deux cas sont à envisager :

Cas 1 : Si M = Ω alors M' = Ω donc $z = z' = \omega$ donc $z' - \omega = e^{i\alpha}(z - \omega)$ est vérifiée.

Cas 2: si M $\neq \Omega$, alors $z \neq \omega$ donc $z - \omega \neq 0$

$$\mathbf{M'} = r(\mathbf{M}) \Leftrightarrow \left\{ \begin{array}{l} \Omega \mathbf{M'} = \Omega \mathbf{M} \\ (\overline{\Omega \mathbf{M}}, \overline{\Omega \mathbf{M'}}) = \alpha + 2 \ k \ \pi \end{array} \right. \text{ où } k \text{ est un entier relatif}$$

$$\begin{cases} \frac{\Omega M' = \Omega M}{(\overline{\Omega M'}, \overline{\Omega M'}) = \alpha + 2k\pi} \iff \begin{cases} |z' - \omega| = |z' - \omega| \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \alpha + 2k\pi \end{cases} \Leftrightarrow \begin{cases} \left|\frac{z' - \omega}{z - \omega}\right| = 1 \\ \arg\left(\frac{z' - \omega}{z - \omega}\right) = \alpha + 2k\pi \end{cases} \Leftrightarrow \frac{z' - \omega}{z - \omega} = e^{i\alpha} \Leftrightarrow z' - \omega = e^{i\alpha} (z - \omega).$$

Dans les deux cas : la rotation r d'angle α et de centre Ω d'affixe ω est la transformation du plan qui à tout point M d'affixe z associe le point M' d'affixe z' telle que : $z' - \omega = e^{i\alpha}(z - \omega)$.

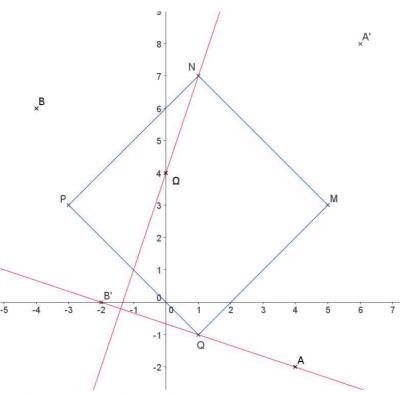
Partie B

1. a.
$$f(\Omega) = \Omega \Leftrightarrow \omega = i \omega + 4 + 4 i \Leftrightarrow \omega = \frac{4+4 i}{1-i} \Leftrightarrow \omega = 4 i$$

b.
$$z' = i z + 4 + 4 i$$
 et $\omega = i \omega + 4 + 4 i$ donc par différence membre à membre : $z' - \omega = i (z - \omega)$ soit $z' - 4 i = i (z - 4 i)$.

$$c$$
. $i = e^{i\frac{\pi}{2}}$ donc $z' - 4$ $i = i$ $(z - 4$ $i) \Leftrightarrow z' - 4$ $i = e^{i\frac{\pi}{2}}$ $(z - 4$ $i)$ donc f est la rotation de centre Ω (4 i) et d'angle $\frac{\pi}{2}$.

2. a.



b. A' est le point d'affixe a' = i(4-2i) + 4 + 4i = 6 + 8iB' est le point d'affixe b' = i(-4+6i) + 4 + 4i = -2

3.
$$a$$
. $m = \frac{a+a'}{2} = 5+3$ i. On admettra que $n = 1+7$ i, $p = -3+3$ i et $q = 1-$ i.

b. \overrightarrow{MN} a pour affixe n - m = -4 + 4 i; \overrightarrow{QP} a pour affixe p - q = -4 + 4 i donc $\overrightarrow{MN} = \overrightarrow{QP}$ Le quadrilatère MNPQ est un parallélogramme.

c.
$$q-m=-4-4 \text{ i donc } \frac{q-m}{n-m} = \frac{-4-4 \text{ i}}{-4+4 \text{ i}} = \text{i}$$

 $\left| \frac{q-m}{n-m} \right| = 1$ donc MQ = MN donc quadrilatère MNPQ est un parallélogramme qui a deux côtés consécutifs de même longueur donc est un losange.

 $\arg\left(\frac{q-m}{n-m}\right) = \frac{\pi}{2} + 2 k \pi \ (k \in \mathbb{Z}) \ donc \ (\overrightarrow{MN}, \overrightarrow{MQ}) = \frac{\pi}{2} + 2 k \pi \ (k \in \mathbb{Z}) \ donc \ le quadrilatère MNPQ est losange qui$ *a*deux côtés consécutifs perpendiculaires donc est un carré.

4.
$$\overrightarrow{B'A}$$
 a pour affixe $a - b' = 4 - 2i + 2 = 6 - 2i$; $\overrightarrow{\Omega N}$ a pour affixe $n - \omega = 1 + 7i - 4i = 1 + 3i$ $(\overrightarrow{\Omega N}, \overrightarrow{B'A}) = \arg\left(\frac{6 - 2i}{1 + 3i}\right) + 2k\pi \text{ or } \frac{6 - 2i}{1 + 3i} = -2i \text{ donc arg } \left(\frac{6 - 2i}{1 + 3i}\right) = \frac{\pi}{2} + 2k\pi (k \in \mathbb{Z}) \text{ donc } (\overrightarrow{\Omega N}, \overrightarrow{B'A}) = \frac{\pi}{2} + 2k\pi (k \in \mathbb{Z})$

donc les droites (B'A) et (Ω N) sont perpendiculaires.

On pouvait aussi utiliser le produit scalaire $\overrightarrow{\Omega N}$. $\overrightarrow{B'A} = 6 \times 1 - 2 \times 3 = 0$ donc les droites (B'A) et (ΩN) sont perpendiculaires.

Exercice 2 5 points Candidats ayant suivi l'enseignement de spécialité

Partie A : Restitution organisée de connaissances

si A, B, A' et B' sont quatre points tels que A est distinct de B et A' est distinct de B', alors leurs affixes, z_A , z_B , $z_{A'}$, $z_{B'}$ sont telles que $z_A \neq z_B$, et $z_{A'} \neq z_{B'}$ soit $z_A - z_B \neq 0$, et $z_{A'} - z_{B'} \neq 0$

Une similitude directe admet une écriture complexe de la forme z' = a z + b où $a \in \mathbb{C} - \{0\}$ et $b \in \mathbb{C}$.

Chercher s'il existe une similitude directe transformant A en A' et B en B' revient à chercher s'il existe deux complexes a et b tels que

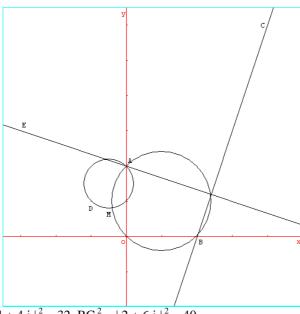
$$\begin{cases} z_{A'} = a z_A + b \\ z_{B'} = a z_B + b \end{cases} \Leftrightarrow \begin{cases} z_{A'} - z_{B'} = a (z_A - z_B) \\ z_{B'} = a z_B + b \end{cases} \text{ or } z_A - z_B \neq 0 \begin{cases} z_{A'} - z_{B'} = a (z_A - z_B) \\ z_{B'} = a z_B + b \end{cases} \Leftrightarrow \begin{cases} a = \frac{z_{A'} - z_{B'}}{z_A - z_B} \\ z_{B'} = a z_B + b \end{cases}$$

 $z_{A'} - z_{B'} \neq 0$ donc $a \in \mathbb{C} - \{0\}$, a est unique et $b = z_{B'} - a z_{B}$ donc b aussi est unique donc l'écriture de f est unique.

si A, B, A' et B' sont quatre points tels que A est distinct de B et A' est distinct de B', alors il existe une unique similitude directe transformant A en A' et B en B'.

Partie B

1.



2. $AB^2 = |2 - 2i|^2 = 8$, $AC^2 = |4 + 4i|^2 = 32$, $BC^2 = |2 + 6i|^2 = 40$, $AB^2 + AC^2 = BC^2$ donc le triangle ABC et rectangle en A

3. a. Il suffit de résoudre le système $\begin{cases} -1 + i = 2 i a + b \\ 2 i = 2 a + b \end{cases}$

Par différence membre à membre : $L_1 - L_2 : -1 - i = 2 (-1 + i) a$ donc $a = \frac{-1 - i}{2 (-1 + i)} = \frac{1}{2}i$

en remplaçant dans 2i = 2a + B on obtient : 2i = i + b donc b = i donc l'écriture complexe de f est $z' = \frac{1}{2}iz + i$

b. f est une similation directe de rapport $|a| = \frac{1}{2}$ et d'angle arg $(a) = \frac{\pi}{2} + 2 k \pi (k \in \mathbb{Z})$

Le centre de f est le point invariant par f donc l'affixe est solution de z' = z donc z = $\frac{1}{2}$ i z + i soit (2 - i) z = 2 i

donc $z = \frac{2i}{2-i} = \frac{2i(2+i)}{5} = -\frac{2}{5} + \frac{4}{5}i$ donc le centre Ω de cette similitude est le point d'affixe $-\frac{2}{5} + \frac{4}{5}i$

c. Soit C' l'image de C par f alors c' = $\frac{1}{2}$ i (4 + 6 i) + i = -3 + 3 i = z_E donc C' = E

La similitude f transforme A, B, C en D, A, E et transforme un triangle en un triangle donc le triangle DAE est l'image du triangle ABC par la similitude f.

d. Une similitude conserve les angles donc le triangle ABC étant rectangle en A, le triangle DAE est l'image du triangle ABC par la similitude f, et f(A) = D alors le triangle DAE est rectangle en D.

4. a. La similitude f transforme la droite (BC) en la droite (f(B) f(C)) donc en la droite (AE)

f(A) = D et f(B) = A, la similitude f transforme le cercle (Γ_1) de diamètre [AB] en le cercle de diamètre [f(A)f(B)] donc en le cercle (Γ_2) ; M \neq B donc $f(M) \neq$ A donc f(M) est le second point d'intersection autre que A du cercle (Γ_2) et de la droite (AE) donc f(M) = N

- f est la similitude directe de centre Ω d'angle $\frac{\pi}{2}$ qui transforme M en N donc le triangle Ω MN est rectangle en Ω donc Ω b. appartient au cercle de diamètre [MN]
- f est une similitude directe de rapport $\frac{1}{2}$,

$$f(M) = N \text{ et } f(C) = E \text{ donc } \frac{NE}{MC} = \frac{1}{2} \text{ de plus } f(B) = A \text{ et } f(M) = N \text{ donc } \frac{NA}{MB} = \frac{1}{2} \text{ donc } \frac{NE}{MC} = \frac{NA}{MB} \text{ donc } MB \times NE = MC \times NA.$$

Exercice 3 Commun à tous les candidats.

1. a. Le barycentre du système
$$\{(A, 2), (B, -1), (C, 1)\}$$
 a pour coordonnées $\left(\frac{2x_A - x_B + x_C}{2 - 1 + 1}; \frac{2y_A - y_B + y_C}{2 - 1 + 1}; \frac{2z_A - z_B + z_C}{2 + 1 - 1}\right)$ donc $\left(\frac{2 \times 1 - 0 + 6}{2}; \frac{2 \times (-1) - 3 + (-7)}{2}; \frac{2 \times 3 - 1 + (-1)}{2}\right)$ soit $(4; -6; 2)$ donc est le point E.

b.
$$2 \overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} = 2 \overrightarrow{ME} \text{ donc } || 2 \overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} || = 2 \sqrt{21} \Leftrightarrow 2 \overrightarrow{ME} = 2 \sqrt{21} \Leftrightarrow ME = \sqrt{21}$$

 Γ est la sphère de centre E de rayon $\sqrt{21}$.

- \overrightarrow{AB} a pour coordonnées $(-1; 4; -2); \overrightarrow{AD}$ a pour coordonnées (1; 2; 0) les coordonnées de \overrightarrow{AB} et \overrightarrow{AD} ne sont pas proportionnelles donc \overrightarrow{AB} et \overrightarrow{AD} ne sont pas colinéaires donc les points A, B et D définissent un plan.
- b. EC a pour coordonnées (2; -1; -3)

$$\overrightarrow{EC}$$
. $\overrightarrow{AB} = x x' + y y' + z z' = -2 - 4 + 6 = 0$ donc les droites (EC) et (AB) sont orthogonales

$$\overrightarrow{EC}$$
. $\overrightarrow{AD} = x x' + y y' + z z' = 2 - 4 = 0$ donc les droites (EC) et (AD) sont orthogonales

les droites (AB) et (AD) sont deux droites sécantes du plan (ABD) ; la droite (EC) est orthogonale à deux droites sécantes de ce plan donc la droite (EC) est orthogonale au plan (ABD).

la droite (EC) est orthogonale au plan (ABD) donc \overrightarrow{EC} est un vecteur normal du plan (ABD) donc une équation du plan est de la forme 2 x - y - 3 z + d = 0

A appartient à ce plan donc
$$2 + 1 - 9 + d = 0$$
 donc $d = 6$

Une équation cartésienne du plan (ABD) est 2x - y - 3z + 6 = 0

3. a. $M \in (EC) \Leftrightarrow il$ existe un réel k tel que EM = k EC

une représentation paramétrique de la droite (EC) est
$$\begin{cases} x = 2k + 4 \\ y = -k - 6 \quad \text{avec } k \in \mathbb{R} \\ z = -3k + 2 \end{cases}$$

b.
$$F \in (EC) \Leftrightarrow \text{il existe un r\'eel } k \text{ tel que} \begin{cases} x = 2k + 4 \\ y = -k - 6 \\ z = -3k + 2 \end{cases}; F \in (ABD) \Leftrightarrow 2x - y - 3z + 6 = 0$$

$$F \in (EC) \cap (ABD) \Leftrightarrow \begin{cases} x = 2k + 4 \\ y = -k - 6 \\ z = -3k + 2 \end{cases} \text{ et } 2x - y - 3z + 6 = 0$$

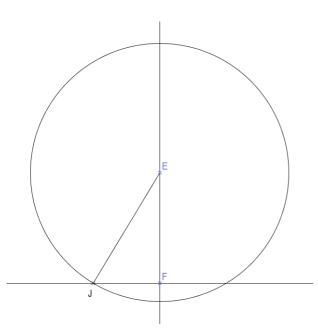
$$F \in (EC) \cap (ABD) \Leftrightarrow \begin{cases} x = 2k + 4 \\ y = -k - 6 \\ z = -3k + 2 \end{cases} \text{ et } 2x - y - 3z + 6 = 0$$

$$2(2k+4)-(-k-6)-3(-3k+2)+6=0 \Leftrightarrow 14k+14=0 \Leftrightarrow k=-1$$

Les coordonnées du point F intersection de la droite (EC) et du plan (ABD) sont (2; -5; 5)

 Γ est la sphère de centre E de rayon $\sqrt{21}$ 4.

La droite (EC) passe par E et est orthogonale au plan (ABD) donc le point F intersection de la droite (EC) et du plan (ABD) est la projection orthogonale de E sur le plan (ABD).



La distance de E au plan (ABD) est égale à EF ou peut se calculer à l'aide de la formule :

$$d = \frac{\left| 2 \times 4 - (-6) - 3 \times 2 + 6 \right|}{\sqrt{2^2 + (-1)^2 + (-3)^2}} = \frac{14}{\sqrt{14}} = \sqrt{14}$$

 $\sqrt{14} < \sqrt{21}$ donc le plan (ABD) et la sphère sont sécants, leur intersection γ est une cercle de centre la projection orthogonale de E sur le plan (ABD).

Soit J un point du cercle γ

Le triangle EFJ est rectangle en F donc $EF^2 + FJ^2 = EJ^2$

or EF =
$$\sqrt{14}$$

FJ est le rayon de γ

EF est égal au rayon de la sphère donc EF = $\sqrt{21}$

$$FJ^2 = 21 - 14 = 7$$
 donc le rayon de γ est $\sqrt{7}$.

 γ est le cercle de centre F de rayon $\sqrt{7}$.

Exercice 4 6 points Commun à tous les candidats. Partie A

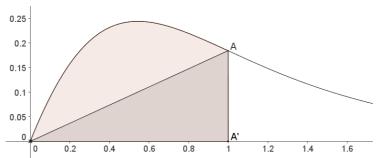
1. La courbe (C) passe par les points O et A
$$\left(1; \frac{1}{2e}\right)$$
 donc $f(0) = 0$ et $f(1) = \frac{1}{2e}$

La fonction f est une primitive de f' donc $\int_0^1 f'(x) dx = f(1) - f(0) = \frac{1}{2e}$.

2. La fonction f est positive et continue sur [0; 1] donc $\int_0^1 f(x) dx$ est la mesure de l'aire du domaine D limité par la courbe,

l'axe des abscisses et les droites d'équation x = 0 et x = 1 sur [0; 1], la courbe (C) est au dessus du segment [OA] donc l'aire du domaine D est supérieure à l'aire du triangle OAA' où A' est de coordonnées (1; 0)

l'aire du triangle OAA' est égale à $\frac{1}{2} \times OA' \times AA' = \frac{1}{2} \times x_A \times y_A = \frac{1}{4e}$ donc $\int_0^1 f(x) dx \ge \frac{1}{4e}$



Partie B

1.
$$f(x) = \frac{x}{x^2 + 1} e^{-x}$$
 or $\lim_{x \to +\infty} e^{-x} = 0$ et $\lim_{x \to +\infty} \frac{x}{x^2 + 1} = \lim_{x \to +\infty} \frac{1}{x + \frac{1}{x}} = 0$ donc $\lim_{x \to +\infty} f(x) = 0$

La courbe (C) admet la droite d'équation y = 0 pour asymptote en $+ \infty$.

2. g est un polynôme donc est une fonction continue dérivable sur $[0; +\infty [$ et $g'(x) = 3x^2 + 2x + 1$ $\Delta = 4 - 4 \times 3$ donc $\Delta < 0$

pour tout x de $[0; +\infty[, g'(x) > 0 \text{ donc } g \text{ est une fonction strictement croissante sur } [0; +\infty[$.

$$g(0) = -1$$
 et $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^3 = +\infty$

donc g est une fonction continue strictement croissante sur $[0; +\infty[$, $g([0; +\infty[) = [-1; +\infty[$ $0 \in [-1; +\infty[$ donc l'équation g(x) = 0 admet une solution unique α dans l'intervalle $[0; +\infty[$.

х	0	α	+∞
g	-1		+ ∞
g(x)	_	0	+

3. a. Il faut bien décomposer le calcul : le numérateur est un produit et la dérivée de e^{-x} est $-e^{-x}$ Si $u(x) = x e^{-x}$ alors $u'(x) = e^{-x} - x e^{-x}$

Si
$$v(x) = x^2 + 1$$
 alors $v'(x) = 2x$

$$f'(x) = \frac{(1-x)e^{-x}(x^2+1) - 2x \times x e^{-x}}{(x^2+1)^2} = \frac{(1-x+x^2-x^3)e^{-x} - 2x^2e^{-x}}{(x^2+1)^2} = \frac{(1-x-x^2-x^3)e^{-x}}{(x^2+1)^2} = -\frac{e^{-x}}{(x^2+1)^2}g(x)$$

pour tout x de $[0; +\infty[$, $\frac{e^{-x}}{(x^2+1)^2} > 0$ donc pour tout x de $[0; +\infty[$, f'(x) et g(x) sont de signes contraires.

b.

x	0	α	+∞
g(x)	_	0	+
f'(x)	+	0	_
f	0	$f(\alpha)$	0

4. *a*. Pour tout *x* de
$$[0; +\infty[, 0 \le \frac{x}{x^2+1}]$$

$$\frac{1}{2} - \frac{x}{x^2 + 1} = \frac{x^2 + 1 - 2x}{x^2 + 1} = \frac{(x - 1)^2}{x^2 + 1}$$
 donc pour tout x de [0; +\infty], $\frac{1}{2} - \frac{x}{x^2 + 1} \ge 0$

donc pour tout x de $[0; +\infty[$, $0 \le \frac{x}{x^2+1} \le \frac{1}{2}$.

b. pour tout
$$x$$
 de $[0; +\infty[$, $0 \le \frac{x}{x^2+1} \le \frac{1}{2}$, la fonction exponentielle est positive sur \mathbb{R} donc $0 \le \frac{x}{x^2+1} e^{-x} \le \frac{1}{2} e^{-x}$

Les fonction $x \to \frac{x}{x^2 + 1} e^{-x}$ et $x \to \frac{1}{2} e^{-x}$ sont continues sur $[0; +\infty[$ et pour tout entier naturel $n, 2, n \ge n$ donc

$$0 \le \int_{n}^{2n} f(x) \, dx \le \int_{n}^{2n} \frac{1}{2} e^{-x} \, dx \text{ soit } 0 \le u_n \le \frac{1}{2} \left[-e^{-x} \right]_{n}^{2n} \text{ soit pour tout entier naturel } n, 0 \le u_n \le \frac{1}{2} (e^{-n} - e^{-2n}).$$

c.
$$\lim_{x \to +\infty} e^{-x} = 0$$
 donc $\lim_{n \to +\infty} \frac{1}{2} (e^{-n} - e^{-2n}) = 0$ or pour tout entier naturel $n, 0 \le u_n \le \frac{1}{2} (e^{-n} - e^{-2n})$ donc $\lim_{n \to +\infty} u_n = 0$.