6 POINTS

Les trois parties sont indépendantes. Les résultats des probabilités seront arrondis à 10⁻³ près.

Partie 1

On estime qu'en 2013 la population mondiale est composée de 4,6 milliards de personnes âgées de 20 à 79 ans et que 46,1 % des personnes âgées de 20 à 79 ans vivent en zone rurale et 53,9 % en zone urbaine.

En 2013, d'après la fédération internationale du diabète, 9,9 % de la population mondiale âgée de 20 à 79 ans vivant en zone urbaine est atteinte de diabète et 6,4 % de la population mondiale âgée de 20 à 79 ans vivant en zone rurale est atteinte de diabète.

On interroge au hasard une personne âgée de 20 à 79 ans. On note :

R l'évènement : « la personne choisie habite en zone rurale »,

- D l'évènement : « la personne choisie est atteinte de diabète ».

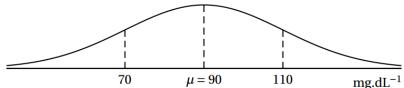
 1. Traduire cette situation à l'aide d'un arbre de probabilité.
- **2.** *a.* Calculer la probabilité que la personne interrogée soit diabétique.
- **2.** *u*. Calculer la probabilité que la personne interrogée soit diabetique.
- **b.** La personne choisie est diabétique. Quelle est la probabilité qu'elle habite en zone rurale?

Partie 2

Une personne est dite en hypoglycémie si sa glycémie à jeun est inférieure à 60 mg.dL^{-1} et elle est en hypoglycémie si sa glycémie à jeun est supérieure à 110 mg. dL^{-1} . La glycémie à jeun est considérée comme « normale » si elle est comprise entre 70 mg.dL^{-1} et 110 mg.dL^{-1} . Les personnes ayant un taux de glycémie compris entre $60 \text{ et } 70 \text{ mg.dL}^{-1}$ ne font pas l'objet d'un suivi particulier. On choisit au hasard un adulte dans cette population. Une étude a permis d'établir que la probabilité qu'il soit en hyperglycémie est $0.052 \text{ à } 10^{-3} \text{ près}$. Dans la suite on admettra que cette probabilité est égale à 0.052.

On modélise la glycémie à jeun, exprimée en $mg.dL^{-1}$, d'un adulte d'une population donnée, par une variable aléatoire X qui suit une loi normale d'espérance μ et d'écart-type σ .

On donne ci-dessous la représentation graphique de la densité de probabilité de la variable aléatoire X.



- 1. Quelle est la probabilité que la personne choisie ait une glycémie à jeun « normale » ?
- 2. Déterminer la valeur de σ arrondie au dixième.
- 3. Dans cette question, on prend $\sigma = 12$. Calculer la probabilité que la personne choisie soit en hypoglycémie.

Partie 3

Afin d'estimer la proportion, pour l'année 2013, de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans, on interroge au hasard 10 000 personnes.

Dans l'échantillon étudié, 716 personnes ont été diagnostiquées diabétiques.

- 1. À l'aide d'un intervalle de confiance au niveau de confiance 95 %, estimer la proportion de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans.
- 2. Quel doit être le nombre minimal de personnes à interroger si l'on veut obtenir un intervalle de confiance d'amplitude inférieure ou égale à 0,01 ?

EXERCICE 3 Candidats n'ayant pas suivi l'enseignement de spécialité 5 POINTS

On dispose d'un dé équilibré à 6 faces numérotées de 1 à 6 et de 2 pièces A et B ayant chacune un côté pile et un côté face. Un jeu consiste à lancer une ou plusieurs fois le dé.

Après chaque lancer de dé, si l'on obtient 1 ou 2, alors on retourne la pièce A, si l'on obtient 3 ou 4, alors on retourne la pièce B et si l'on obtient 5 ou 6, alors on ne retourne aucune des deux pièces.

Au début du jeu, les 2 pièces sont du côté face.

1. Dans l'algorithme ci-dessous, 0 code le côté face d'une pièce et 1 code le côté pile. Si *a* code le côté de la pièce A à un instant donné, alors 1– *a* code le côté de la pièce A après l'avoir retournée.

```
a, b, d, s sont des entiers
Variables:
                 i, n sont des entiers supérieurs ou égaux à 1
                 a prend la valeur 0
Initialisation:
                 b prend la valeur 0
                 Saisir n
Traitement:
                 Pour i allant de 1 à n faire
                      d prend la valeur d'un entier aléatoire compris entre 1 et 6
                      Si d \le 2
                           alors a prend la valeur 1 - a
                           sinon Si d \le 4
                               alors b prend la valeur 1 - b
                           FinSi
                           FinSi
                           s prend la valeur a + b
                 FinPour
```

a. On exécute cet algorithme en saisissant n = 3 et en supposant que les valeurs aléatoires générées successivement pour d sont 1; 6 et 4. Recopier et compléter le tableau donné ci-dessous contenant l'état des variables au cours de l'exécution de l'algorithme :

variables	i	d	а	b	S
initialisation	>>	>>			>>
1er passage boucle Pour					
2 e passage boucle Pour					
3 e passage boucle Pour					

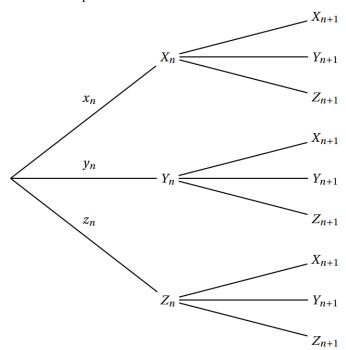
- **b.** Cet algorithme permet-il de décider si à la fin les deux pièces sont du côté pile ?
- 2. Pour tout entier naturel n, on note :
- X_n l'évènement : « À l'issue de n lancers de dés, les deux pièces sont du côté face »
- Y_n l'évènement : « À l'issue de *n* lancers de dés, une pièce est du côté pile et l'autre est du côté face »
- Z_n l'évènement : « À l'issue de n lancers de dés, les deux pièces sont du côté pile ».

De plus on note, $x_n = P(X_n)$; $y_n = P(Y_n)$ et $z_n = P(Z_n)$ les probabilités respectives des évènements X_n , Y_n et Z_n .

- a. Donner les probabilités x_0 , y_0 et z_0 respectives qu'au début du jeu il y ait 0, 1 ou 2 pièces du côté pile.
- **b.** Justifier que $P_{X_n}(X_{n+1}) = \frac{1}{3}$.
- *c*. Recopier l'arbre ci-contre et compléter les probabilités sur ses branches, certaines pouvant être nulles :
- **d.** Pour tout entier naturel n, exprimer z_n en fonction de x_n et y_n .
- e. En déduire que, pour tout entier naturel n,

$$y_{n+1} = -\frac{1}{3}y_n + \frac{2}{3}.$$

f. On pose, pour tout entier naturel n, $b_n = y_n - \frac{1}{2}$.



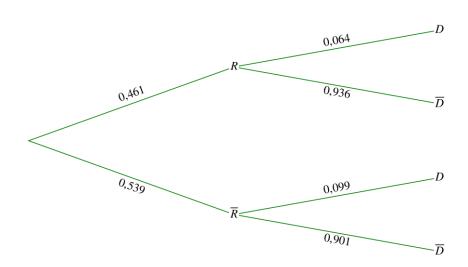
Montrer que la suite (b_n) est géométrique. En déduire que, pour tout entier naturel $n, y_n = \frac{1}{2} - \frac{1}{2} \times \left(-\frac{1}{3}\right)^n$.

g. Calculer $\lim_{n \to +\infty} y_n$. Interpréter le résultat.

CORRECTION

EXERCICE 1 commun à tous les candidats 6 POINTS Partie 1

1.



2. *a.* Calculer la probabilité que la personne interrogée soit diabétique.

 $p(D) = p(R \cap D) + p(\overline{R} \cap D) = 0.461 \times 0.064 + 0.539 \times 0.099 = 0.082865 \text{ soit } 0.083 \text{ à } 10^{-3} \text{ près.}$

b.
$$p_{\rm D}(R) = \frac{p(R \cap D)}{p(D)} = \frac{0.461 \times 0.064}{0.083} \approx 0.356$$

Si la personne choisie est diabétique, la probabilité qu'elle habite en zone rurale est de 0,356.

Partie 2

1. La probabilité qu'une personne soit en hyperglycémie est 0.052 à 10^{-3} près donc $P(X \ge 110) = 0.052$ La courbe étant symétrique par rapport à la droite x = 90 alors $P(X \le 70) = 0.052$ $P(70 \le X \le 110) = 1 - P(X \le 70) - P(X \ge 110) = 1 - 2 \times 0.052 = 0.896$.

La probabilité que la personne choisie ait une glycémie à jeun « normale » est 0,896.

Soit
$$T = \frac{X - 90}{\sigma}$$
, T suit une loi normale centrée réduite donc $p(X \le 70) = p\left(T \le \frac{70 - 90}{\sigma}\right) = 0,052$
 $p\left(T \le -\frac{20}{\sigma}\right) = 0,052 \Leftrightarrow 1 - p\left(T \le \frac{20}{\sigma}\right) = 0,052 \Leftrightarrow p\left(T \le \frac{20}{\sigma}\right) = 1 - 0,052 = 0,848 \text{ donc } \frac{20}{\sigma} \approx 1,626 \text{ soit } \sigma = \frac{20}{1.626} \approx 12,3$

3. La probabilité que la personne choisie soit en hypoglycémie est p ($0 \le X \le 60$) soit 0,006 à 10^{-3} près. (fait à la calculette)

Partie 3

1. $n = 10\ 000, f = 0.0716$ donc $nf \ge 5$ et $n(1-f) \ge 5$, les conditions d'utilisation d'un intervalle de confiance sont réunies.

$$I_{10\,000} = \left[0,0756 - \frac{1}{\sqrt{10\,000}}; 0,0756 + \frac{1}{\sqrt{10\,000}} \right] \text{ soit } [0,0656; 0,0856]$$

la proportion de personnes diagnostiquées diabétiques dans la population française âgée de 20 à 79 ans est comprise entre 6,56 % et 8,56 %.

2.
$$I_n = \left[0.0756 - \frac{1}{\sqrt{n}}; 0.0756 + \frac{1}{\sqrt{n}} \right]$$
 donc l'amplitude de cet intervalle de confiance est $\frac{2}{\sqrt{n}}$

Cette amplitude est inférieure ou égale à 0,01 si et seulement si $\frac{2}{\sqrt{n}} \le 0,01$ soit $\frac{2}{0,01} \le \sqrt{n}$ donc $n \ge 200^2$ soit $n \ge 40$ 000.

EXERCICE 3 Candidats n'ayant pas suivi l'enseignement de spécialité 5 POINTS

1. a.

variables	i	d		а	b	S
initialisation	\times	X		0	0	\times
1er passage boucle Pour	1	1	$d \le 2$ donc a prend la valeur $1 - a$, b est invariant	1	0	1
2 e passage boucle Pour	2	6	d > 4 donc a et b sont invariants	1	1	2
3 e passage boucle Pour	3	4	$d \le 4$ donc a est invariant et b prend la valeur $1 - b$	1	0	1

- **b.** A chaque étape la variable s détermine le nombre de pièces se trouvant du côté pile. Cet algorithme permet donc bien de décider si à la fin les deux pièces sont du côté pile (s = 2).
- **2.** a. D'après l'énoncé $x_0 = 1$, $y_0 = 0$ et $z_0 = 0$.
- **b.** X_n l'évènement : « À l'issue de n lancers de dés, les deux pièces sont du côté face » donc si X_n est réalisé, X_{n+1} le sera si les on ne retourne aucune des deux pièces donc si le dé amène le 5 ou le 6 donc $P_{X_n}(X_{n+1}) = \frac{2}{6} = \frac{1}{3}$.

c.

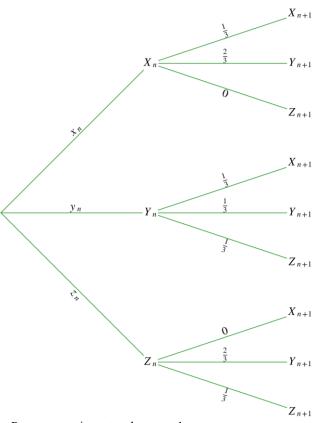
Si les pièces sont du côté face au bout de *n* lancers alors, au lancer suivant, soit les pièces sont du côté face, soit une est du côté pile et l'autre du côté face

donc
$$p(X_n \cap Y_{n+1}) = 1 - \frac{1}{3} = \frac{2}{3}$$

Si, au lancer n, une pièce est du côté pile et l'autre est du côté face, alors la seule possibilité de conserver un tel état, au suivant n + 1, est d'obtenir avec le dé le 5 ou le 6

donc
$$p(Y_n \cap Y_{n+1}) = \frac{1}{3}$$
.

De même
$$p(Y_n \cap X_{n+1}) = \frac{1}{3}$$
 et $p(Y_n \cap Z_{n+1}) = \frac{1}{3}$.



Si, au lancer n, les deux pièces sont du côté pile alors, au lancer suivant n + 1, on ne peut avoir que deux possibilités : les deux pièces sont toujours du côté pile ou alors l'une est du côté pile et l'autre du côté face.

Pour garder les pièces du côté pile il faut obtenir 5 ou 6 avec le dé.

Donc
$$p(Z_n \cap Z_{n+1}) = \frac{1}{3} \text{ et } p(Z_n \cap Y_{n+1}) = \frac{2}{3}$$

d. Pour tout entier naturel n, $z_n = 1 - x_n - y_n$.

e.
$$y_{n+1} = p(X_n \cap Y_{n+1}) + p(Y_n \cap Y_{n+1}) + p(Z_n \cap Y_{n+1}) = \frac{2}{3}x_n + \frac{1}{3}y_n + \frac{2}{3}z_n$$

or $z_n = 1 - x_n - y_n$ donc $y_{n+1} = \frac{2}{3}x_n + \frac{1}{3}y_n + \frac{2}{3}(1 - x_n - y_n)$, pour tout entier nature $n, y_{n+1} = -\frac{1}{3}y_n + \frac{2}{3}$.

f. Pour tout entier naturel
$$n$$
, $b_n = y_n - \frac{1}{2}$ donc $y_n = b_n + \frac{1}{2}$

 $b_{n+1} = y_{n+1} - \frac{1}{2} = -\frac{1}{3}y_n + \frac{2}{3} - \frac{1}{2} = -\frac{1}{3}\left(b_n + \frac{1}{2}\right) + \frac{1}{6} = -\frac{1}{3}b_n$ donc la suite (b_n) est géométrique de raison $q = -\frac{1}{3}$ de premier

terme
$$b_0 = y_0 - \frac{1}{2} = -\frac{1}{2}$$
 donc $b_n = b_0 q^n = -\frac{1}{2} \times \left(-\frac{1}{3}\right)^n$.

Pour tout entier naturel n, $y_n = b_n + \frac{1}{2} = \frac{1}{2} - \frac{1}{2} \times \left(-\frac{1}{3}\right)^n$.

g.
$$-1 < -\frac{1}{3} < 1 \text{ donc } \lim_{n \to +\infty} \left(-\frac{1}{3} \right)^n = 0 \text{ donc } \lim_{n \to +\infty} y_n = \frac{1}{2}.$$

Au bout d'un grand nombre de lancers, la probabilité d'obtenir une pièce du côté pile et une du côté face est de 50 %.