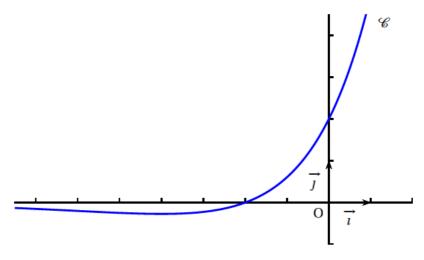
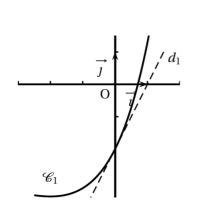
Soit f une fonction définie et dérivable sur \mathbb{R} . On note

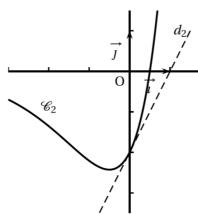
C sa courbe représentative dans le plan muni d'un repère $(O; \vec{i}, \vec{j})$.

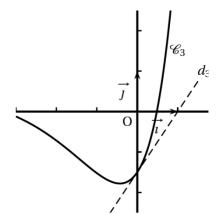
Partie A

Sur les graphiques ci-dessous, on a représenté la courbe **C** et trois autres courbes **C**₁, **C**₂, **C**₃ avec la tangente en leur point d'abscisse 0.









- 1. Donner par lecture graphique, le signe de f(x) selon les valeurs de x.
- 2. On désigne par F une primitive de la fonction f sur \mathbb{R} .
- **a.** À l'aide de la courbe \mathbf{C} , déterminer F'(0) et F'(-2).
- **b.** L'une des courbes C_1 , C_2 , C_3 est la courbe représentative de la fonction F.

Déterminer laquelle en justifiant l'élimination des deux autres.

Partie B

Dans cette partie, on admet que la fonction f évoquée dans la **partie A** est la fonction définie sur \mathbb{R} par : f(x) = (x+2) e $e^{\frac{1}{2}x}$.

- 1. L'observation de la courbe \mathbf{C} permet de conjecturer que la fonction f admet un minimum.
- **a.** Démontrer que pour tout réel $x, f'(x) = \frac{1}{2}(x+4) e^{\frac{1}{2}x}$.
- **b.** En déduire une validation de la conjecture précédente.
- 2. On pose $I = \int_{0}^{1} f(x) dx$
- a. Interpréter géométriquement le réel I.
- **b.** Soient u et v les fonctions définies sur \mathbb{R} par u(x) = x et $v(x) = e^{\frac{1}{2}x}$

Vérifier que f = 2 (u' v + u v').

- c. En déduire la valeur exacte de l'intégrale I.
- **3.** On donne l'algorithme ci-dessous.

Variables: k et n sont des nombres entiers naturels.

s est un nombre réel.

Entrée : Demander à l'utilisateur la valeur de *n*.

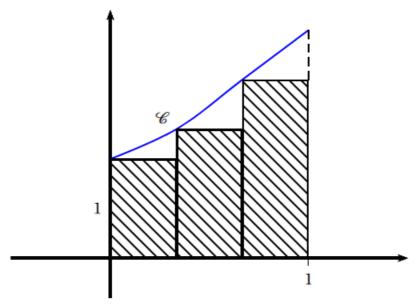
Initialisation : Affecter à s la valeur 0. Traitement : Pour k allant de 0 à n-1

| Affecter à s la valeur $s + \frac{1}{n} f\left(\frac{k}{n}\right)$ Fin de boucle.

Sortie: Afficher s.

On note s_n le nombre affiché par cet algorithme lorsque l'utilisateur entre un entier naturel strictement positif comme valeur de n.

a. Justifier que s_3 représente l'aire, exprimée en unités d'aire, du domaine hachuré sur le graphique ci-dessous où les trois rectangles ont la même largeur.

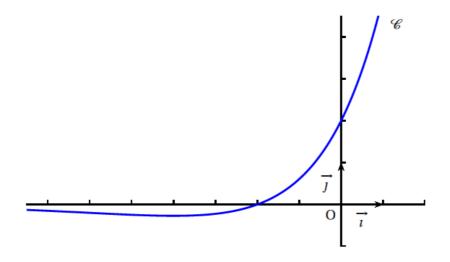


b. Que dire de la valeur de s_n fournie par l'algorithme proposé lorsque n devient grand?

CORRECTION

Partie A

1. Graphiquement: $f(x) = 0 \Leftrightarrow x = -2$; $f(x) < 0 \Leftrightarrow x < -2$; $f(x) > 0 \Leftrightarrow x > -2$



2. *a. F* une primitive de la fonction f sur \mathbb{R} donc F' = f.

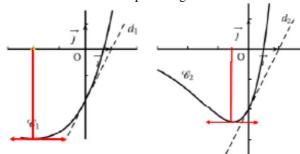
$$F'(0) = f(0) = 2$$

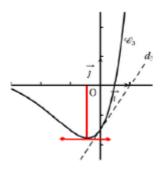
$$F'(-2) = f(-2) = 0$$

b. F une primitive de la fonction f sur \mathbb{R} donc F' = f donc F est décroissante sur $]-\infty;-2]$ et F est croissante sur $[-2;+\infty[$.

F'(-2) = f(-2) = 0 donc la courbe représentative de F admet au point d'abscisse -2 une tangente horizontale.

 \mathbf{C}_2 et \mathbf{C}_3 ne remplissent pas ces conditions donc ne conviennent pas : tangente non horizontale en -2 pour les deux courbes.





Partie B

1. L'observation de la courbe C permet de conjecturer que la fonction f admet un minimum.

$$a. \begin{cases} u(x) = x + 2 & u'(x) = 1 \\ v(x) = e^{\frac{1}{2}x} & v'(x) = \frac{1}{2}e^{\frac{1}{2}x} & \text{donc } f'(x) = e^{\frac{1}{2}x} + (x + 2) \frac{1}{2}e^{\frac{1}{2}x} . \end{cases}$$

$$f'(x) = \frac{1}{2}e^{\frac{1}{2}x}[2 + (x + 2)] = \frac{1}{2}(x + 4)e^{\frac{1}{2}x}$$

b. La fonction exponentielle est strictement positive sur \mathbb{R} donc f'(x) a le même signe que x+4

si
$$x \le -4, f'(x) \le 0$$

si $x \ge -4$, $f'(x) \ge 0$ donc f admet un minimum pour x = -4

2. *a*. La fonction f est définie continue positive sur [0; 1] donc I est l'aire de la partie de plan limitée par l'axe des abscisses, la courbe de f et les droites d'équation x = 0 et x = 1.

b.
$$\begin{cases} u(x) = x & u'(x) = 1 \\ v(x) = e^{\frac{1}{2}x} & v'(x) = \frac{1}{2}e^{\frac{1}{2}x} & \text{donc } 2(u'v + uv')(x) = 2e^{\frac{1}{2}x} + xe^{\frac{1}{2}x} = (x+2)e^{\frac{1}{2}x} & \text{donc } f = 2(u'v + uv'). \end{cases}$$

c. f = 2(u'v + uv') = 2(uv) donc une primitive de f est la fonction F telle que F = 2uv

$$I = F(1) - F(0) = 2 \times 1 e^{\frac{1}{2}} - 2 \times 0 e^{0} = 2 e^{\frac{1}{2}}$$

3. a.

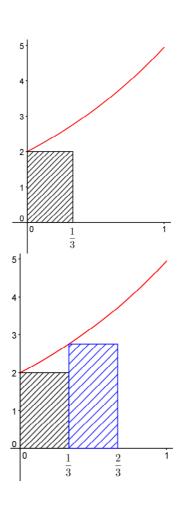
Initialisation s = 0

Pour k = 0, $\frac{1}{3} f(0)$ est l'aire du rectangle de largeur $\frac{1}{3}$ de

longueur f(0) soit l'aire du rectangle hachuré :

donc s prend la valeur égale à l'aire hachurée en noir

Pour k=1, à cette aire on ajoute $\frac{1}{3}f\left(\frac{1}{3}\right)$ donc on ajoute l'aire du rectangle de largeur $\frac{1}{3}$ de longueur $f\left(\frac{1}{3}\right)$ soit l'aire du rectangle hachuré en bleu s prend donc la valeur égale à la somme des deux aires hachurées.



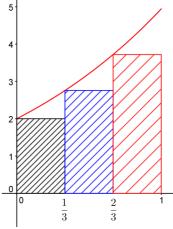
Pour k = 2, à cette aire on ajoute $\frac{1}{3} f\left(\frac{2}{3}\right)$ donc on ajoute l'aire

du rectangle de largeur $\frac{1}{3}$ de longueur $f\left(\frac{2}{3}\right)$ soit l'aire du

rectangle hachuré en rouge.

s prend donc la valeur égale à la somme des trois aires hachurées.

L'algorithme s'arrête donc s_3 représente l'aire, exprimée en unités d'aire, du domaine hachuré sur le graphique ci-contre



b. L'affichage de l'algorithme obtenu après n boucles (de k=0 à k=(n-1)) est la somme de n termes qui sont de la forme $\frac{1}{n}f\left(\frac{k}{n}\right)$ donc l'affichage est : $\frac{1}{n}f(0) + \frac{1}{n}f\left(\frac{1}{n}\right) + ... + f\left(\frac{n-1}{n}\right)$.

C'est la somme des aires des rectangles « sous la courbe » et au dessus de l'axe des x entre x = 0 et x = 1, leur largeur vaut $\frac{1}{n}$ leur

longueur
$$f\left(\frac{k}{n}\right)$$
.

Quand *n* devient grand, s_n se rapproche de $I = \int_0^1 f(x) dx$.